If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x+1200=0
a = 1; b = -80; c = +1200;
Δ = b2-4ac
Δ = -802-4·1·1200
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-40}{2*1}=\frac{40}{2} =20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+40}{2*1}=\frac{120}{2} =60 $
| (-9b)+(-39)=60 | | 2(t+27)=98 | | -2(p-5)+7p=-5= | | 3(4-2x)=4-(6-8) | | (4/3)y+17=-7 | | (h/6)-3=2 | | 2=11+3(m+3)= | | (-2)=(-5)+3m | | 90=144+a | | (y/2)-1=2 | | 10=r2 | | 2(-20-9)=3x+20 | | 27c=50 | | 5(k-2)-8k=-34= | | x+(x*0.05)=10,000 | | 4=5.7+h | | |x|+3=2x | | 3(3x-4)=14(32x+56) | | 0.17y+0.09(y+6000)=1580 | | (d/4)-1=3 | | 132=44x | | 132+44x=180 | | 5x+4=164 | | 4x+6=43 | | x+0.9=0.4x-0.3 | | (g/4)-(-13)=17 | | 10+7w=765 | | 2j+(4)=12 | | (z/4)-1=2 | | 7n+2n=3n-7n+8 | | 3+2x-5x=22+6x | | x+83+x+107=180 |